Sensor fusion enables sophisticated next-gen applications
Rich Collins, Synopsys
embedded.comm (June 01, 2014)
Although a novelty only a few years ago, sensors are now almost ubiquitous due to the explosive growth of smart devices. The ability to read and interpret environmental conditions such as pressure, temperature, and proximity is featured in many applications. Sophisticated sensor applications combine sensor data from multiple sources to provide a higher order of functionality. This practice is called sensor fusion. Combining an accelerometer, gyroscope, and magnetometer (compass) to create an accurate motion sensor is a prime example of sensor fusion.
Increasing complexity of sensor fusion algorithms requires additional processing capability and software overhead. To reduce impact on the applications processor, sensor functions are being handled by off-chip co-processors as well as integrated, on-chip subsystems. This article highlights some interesting sensor fusion applications, and the increasing need for IP solutions that support the necessary features for integration into a wide range of market applications where sensor fusion algorithms play an important role.
The growth of sensor fusion market
There has been significant growth in systems incorporating sensor fusion technology as more semiconductor suppliers integrate sensor interfaces into their system-on-chips (SoCs). Although motion sensing in smartphones is the most common example of sensor fusion implementation, these functions also are being incorporated into many different applications such as those found in the automotive, consumer electronics, and digital home markets. According to Semico research, the number of systems incorporating sensor fusion is predicted to grow from 400M units in 2012 to over 2.5B units in 2016 – an annual growth rate of almost 60%.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Synopsys, Inc. Hot IP
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow