NVM OTP NeoBit in Maxchip (180nm, 160nm, 150nm, 110nm, 90nm, 80nm)
What is 802.11ac, anyway?
Jackson Corson
EDN (September 09, 2014)
IEEE 802.11ac has a lot to add to the wireless family. It brings a significant improvement over 802.11n. What are the differences between 802.11n and 802.11ac?
802.11n uses a system called MIMO (Multiple-Input Multiple-Output) to transmit multiple spatial streams to another device that implements 11n. This is accomplished by using spatial multiplexing, a technique used in wireless MIMO technology to transmit multiple data streams simultaneously.
With MIMO technology, 802.11n devices could reach a maximum theoretical data rate of 600 (Mbits/s). 802.11ac outlines the use of eight spatial streams, which has a theoretical data rate of 6933.3 Mbits/s. This is a huge boost over 802.11n because it allows for gigabit speeds over wireless. These are, of course, the best case rates. Most 802.11n devices will perform at 405.0-450.0 Mbits/s because vendors typically only implement up to three spatial streams. In 802.11ac, three spatial streams will perform at about 2106-2340 Mbits/s, which still represents a large increase over 802.11n.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)