The future of custom ASICs
Donnacha O’Riordan, S3 Group
EEtimes Europe (February 26, 2015)
For decades, electronics product innovation has been incremental in nature, relying largely on the next generation of semiconductors to deliver performance improvement. For almost 50 years Moore’s Law has delivered 2x performance (power or cost) improvement in semiconductors every 18 months, outpacing any product or system level innovation cycle that could be achieved by even the most ambitious hardware teams. What has evolved is a “sit & wait” approach, to product innovation. However it is now clear that Moore’s law is broken, and the implications are profound for hardware designers.
The Semiconductor industry is consolidating, into fewer huge players. The fabless model is under increasing strain favouring only the most massively distributed companies. Hardware product teams can no longer “sit & wait” for performance improvement to be delivered by semiconductor companies, architecture is becoming more relevant, it becomes feasible – even necessary, for product teams to develop their own custom ASICs.
Here, I highlight some of the trends that have caused the hardware industry to favour a “sit & wait” approach to innovation, and looking forward 5 to 10 years, suggest what will be a fundamental shift in how hardware product innovation happens.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)