Agile Design for Hardware, Part I
David Patterson and Borivoje Nikolic, UC Berkeley
7/27/2015 07:00 AM EDT
In the first of a three-part series, two Berkeley professors suggest its time to apply Agile design techniques to hardware.
Software used to be developed as a sequence of distinct phases, each of which can take six or more months:
- Requirements analysis and specification
- Architectural design
- Implementation and integration
- Verification and test
- Operation and maintenance
This process is the called the Waterfall development model, since it flows from the top down to completion. Waterfall relies on extensive documentation, planning, and using PERT and Gantt charts to try to make the schedule match the budget.
So many software projects were late, over budget, or abandoned that it led to a revolution in software development, demarcated by the Agile Manifesto in 2001. Agile development embraces change as a fact of life; small teams continuously refine a working but incomplete prototype until the customer is happy with the result. What to do in the next iteration depends on the evaluation of the current one, as opposed to some master plan established at the beginning of the project. Thus, the elaborate planning and documentation of the Waterfall process is moot.
E-mail This Article | Printer-Friendly Page |
Related Articles
- Agile Design for Hardware, Part II
- Next Gen Scan Compression Technique to overcome Test challenges at Lower Technology Nodes (Part - I)
- Is Agile coming to Hardware Development?
- Dealing with automotive software complexity with virtual prototyping - Part 2: An AUTOSAR use case
- Optimizing embedded software for power efficiency: Part 2 - Minimizing hardware power
New Articles
- Accelerating RISC-V development with Tessent UltraSight-V
- Automotive Ethernet Security Using MACsec
- What is JESD204C? A quick glance at the standard
- Optimizing Power Efficiency in SOC with PVT Sensor-Assisted DVFS Technology
- Bandgap Reference (BGR) Circuit Design and Transient Analysis in 90nm VLSI Technology
Most Popular
- System Verilog Assertions Simplified
- Accelerating RISC-V development with Tessent UltraSight-V
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Understanding Logic Equivalence Check (LEC) Flow and Its Challenges and Proposed Solution
- Design Rule Checks (DRC) - A Practical View for 28nm Technology