Combining USB Type-C and DisplayPort support in portable implementations
Morten Christiansen, Synopsys
Tech Design Forum (September 26, 2017)
Our expectations of portable electronic devices are rapidly converging. We want mobile phones that can make videos, tablets that can play games, and laptops that can make calls.
This functional blurring creates both an opportunity and a challenge for SoC designers. The opportunity is to architect single SoCs that can be used in many of these product categories. One challenge in devising such SoCs is to implement the high-performance I/O necessary to support, for example, 4K video output, in an efficient, low pin-count way.
One approach is to use USB Type-C connectors to carry data, audio, video and power on a single port. This is a complex undertaking, best achieved by using validated IP blocks, verification suites and test cases to enable rapid integration of these functions into an SoC.
Synopsys has integrated a set of IP blocks into a solution that combines both USB-C 3.1 and DisplayPort support (see Figure 1). It includes USB 3.1, DisplayPort 1.4 TX, DisplayPort AUX, HDCP 1.4 controllers, HDCP 2.2 Embedded Security Modules, and USB 2.0, USB 3.1, DisplayPort TX and DisplayPort AUX PHYs. The solution comes with verification IP and test cases.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Search Silicon IP
Synopsys, Inc. Hot IP
Related Articles
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow