How to create energy-efficient IIoT sensor nodes
by Noel O’Riordan and Tommy Mullane, S3 Semiconductors
When you’re designing sensor node devices destined for the industrial internet of things (IIoT), chances are they need to be battery-powered. And given the number of these expected to be deployed, and their often-remote locations, changing or charging a battery frequently isn’t an option. Your device, therefore, needs to be exceptionally energy-efficient, which demands you design everything from the overall system to its individual circuits to minimize energy use.
The challenge is that anyone energy-related design decision is likely to have knock-on effects elsewhere. And then there are less obvious things that can play havoc with battery life. For example, while we know the RF transmitter will generally be a big energy user, it can sometimes be the receiver or power consumption during sleep mode that causes the battery to drain fast. We’ll explore this below.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
- How MIPI Alliance specs enable the IIoT
- How to reuse your IIoT technology investments - now
- Fully depleted silicon technology to underlie energy-efficient designs at 28 nm and beyond
- Utilizing UWB in ultra-low power ZigBee wireless sensor nodes
- How to Create Efficient IP Standards and Why You Should Care
New Articles
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
- Timing Optimization Technique Using Useful Skew in 5nm Technology Node
- Streamlining SoC Design with IDS-Integrate™
- Last-Time Buy Notifications For Your ASICs? How To Make the Most of It
Most Popular
- Advanced Packaging and Chiplets Can Be for Everyone
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Timing Optimization Technique Using Useful Skew in 5nm Technology Node
- Streamlining SoC Design with IDS-Integrate™
- System Verilog Assertions Simplified