MIPI C-PHY v1.2 D-PHY v2.1 TX 3 trios/4 Lanes in TSMC (16nm, 12nm, N7, N6, N5, N3E)
5 Steps to Confront the Talent Shortage With IP-Centric Design
By Vishal Moondhra, Perforce Software
EETimes (January 4, 2024)
The talent shortage is one of the biggest challenges the U.S. semiconductor industry must confront.
According to the Semiconductor Industry Association, of the 115,000 open jobs in the industry through 2030, 58% will not be filled. The demand for these skilled employees isn’t going away anytime soon, especially as the chip industry accelerates design and production sparked by the 2022 CHIPS and Science Act. Projects are coming to market faster, budgets are tighter and teams are spread across the globe, making efficiency paramount across the board. However, U.S. chipmakers could come to a standstill if they don’t figure out how to close the talent gap.
One way to help alleviate the effects of the talent shortage is changing how semiconductors are designed so that organizations can achieve more with their existing workforce. This requires moving away from project-centric design and transitioning to an IP-centric design methodology. But why make this switch?
E-mail This Article | Printer-Friendly Page |
|
Related Articles
New Articles
- Quantum Readiness Considerations for Suppliers and Manufacturers
- A Rad Hard ASIC Design Approach: Triple Modular Redundancy (TMR)
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
Most Popular
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- System Verilog Assertions Simplified
- Smart Tracking of SoC Verification Progress Using Synopsys' Hierarchical Verification Plan (HVP)
- Dynamic Memory Allocation and Fragmentation in C and C++
- Synthesis Methodology & Netlist Qualification