Key considerations and challenges when choosing LDOs
By Chris Morrison, Agile Analog
Planet Analog (August 5, 2024)
Low drop-out (LDO) voltage regulators play a critical role in modern electronics, including smartphones, wearable devices, and other portable gadgets. Their integration within system-on-chip (SoC) architectures has become increasingly common due to their efficiency and reliability. However, the vast array of on-chip LDO options and characteristics can make the selection process complex.
Before selecting an LDO, it’s important to clearly define the specific requirements of your IC design. Consider factors such as voltage regulation needs, power efficiency, noise sensitivity, and physical constraints. To choose the right LDO for your application, you must first delineate your specific requirements and determine the crucial criteria.
Identifying the optimal LDO involves understanding the various types available and their distinct features.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- Understanding why power management IP is so important
- Simplifying analog and mixed-signal design integration
- How control electronics can help scale quantum computers
- Analog IP to protect SoC from side-channel attacks
- Agile Analog's Approach to Analog IP Design and Quality --- Why "Silicon Proven" is NOT What You Think
New Articles
- Why RISC-V is a viable option for safety-critical applications
- Dimensioning in 3D space: Object Volumetric Measurement by Leveraging Depth Camera-based Reconstruction on NVIDIA Edge devices
- What is JESD204B? Quick summary of the standard
- Post-Quantum Cryptography - Securing Semiconductors in a Post-Quantum World
- Analysis and Summary on Clock Generator Circuits and PLL Design
Most Popular
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Method for Booting ARM Based Multi-Core SoCs
- An Outline of the Semiconductor Chip Design Flow