Optimizing Automated Test Equipment for Quality and Complexity
By Jeorge Hurtarte, Teradyne (August 28, 2024)
AI is changing our world, driving unprecedented growth and innovation. High-performance chips at the heart of this revolution are marked by increasing complexity, precision requirements and integration of advanced technologies.
This explosive change is creating new demands on digital technology and the automated test systems on which semiconductor manufacturing relies. It is a comprehensive shift that demands flexible testing strategies to address new process architectures, heterogeneous packaging, and the complexities of hardware and software integration.
Today’s semiconductor test industry employs a multifaceted approach to tackle these diverse challenges. By advancing test equipment, integrating AI, adopting new standards, and optimizing test processes, the automated test equipment (ATE) industry is ensuring that it can keep pace with the rapid evolution of semiconductor technology and the needs of manufacturers.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- Automated Test-Bench for Mobile Applications
- Functional Qualification - An Automated and Objective Measure of Functional Verification Quality
- Shifting from functional to structured techniques improves test quality
- SoC Test and Verification -> SoC complexity demands new test strategies
- Bigger Chips, More IPs, and Mounting Challenges in Addressing the Growing Complexity of SoC Design
New Articles
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency
- Nexus: A Lightweight and Scalable Multi-Agent Framework for Complex Tasks Automation
- How the Ability to Manage Register Specifications Helps You Create More Competitive Products
Most Popular
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- System Verilog Assertions Simplified
- Synthesis Methodology & Netlist Qualification
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- System Verilog Macro: A Powerful Feature for Design Verification Projects