Industry Expert Blogs
Vivante Vega GPU Geometry and Tessellation Shader OverviewGPU Talk - Extreme Graphics! - Benson TaoFeb. 13, 2014 |
GPU Technology Overview
GPU hardware has gone through an extensive overhaul over the past decade with the industry moving from first generation fixed function graphics accelerators (precursor to the GPU) all the way to the current generation general purpose “shader” pipelines that can be configured for graphics, parallel compute, image/vision, and video workloads. Keeping at least one step ahead of industry trends, the latest generation of Vega GPU products is highlighted below, including the addition of geometry shaders (GS) and tessellation shaders (TS) that add extreme visual rendering to the GPU pipeline. The new features allow developers to create photo realistic images and customized effects in their programs, and give consumers an amazing experience that brings PC-level graphics to mobile, home, and embedded products to create a seamless experience across any screen.
The images above showcase some of the major differences in visual quality and processing capabilities between successive generations of GPU hardware based on industry standard application programming interfaces (APIs) like OpenGL® ES and Microsoft® DirectX®. Graphics APIs are a common interface that provides a hardware abstraction layer for application developers to access GPU hardware through programming calls to the operating system (OS). With APIs, developers only need to focus on the high level details of their graphics application so they can focus on maximizing performance, visuals, and UI quality and not be concerned with low level programming details of the underlying GPU hardware and architecture. A simplified process is as follows. When an application wants to render an object onscreen, the application uses standard API function calls. The API calls then go to the OS which invokes the GPU driver and tells the GPU hardware to draw the corresponding object and display it on the device screen.
APIs are just a starting point and guideline for GPU IP designers to implement their designs. The true differentiator that gives the Vega architecture its advantage comes down to the careful analysis and design of every nut-and-bolt in the GPU. This secret sauce is continuous optimization of the entire GPU micro-architecture and algorithms, to get the highest performance and complete feature set in the smallest die area and power to gain the best silicon PPA leadership built around Vivante’s motto of Smaller-Faster-Cooler. The Vega design analysis also takes it a step further by deep diving into the entire user experience from gaming, CAD, productivity apps, and innovative user interfaces, to the underlying system level optimizations between the GPU, CPU, VPU, ISP, SoC fabric, memory and display subsystems. In addition, the addition of GS and TS to the Vega GPU pipeline brings additional system level enhancements and power reduction, which are discussed below.
Related Blogs
- Vivante Vega GPU Geometry and Tessellation Shader Overview
- Digitizing Data Using Optical Character Recognition (OCR)
- Intel Embraces the RISC-V Ecosystem: Implications as the Other Shoe Drops
- Extending Arm Total Design Ecosystem to Accelerate Infrastructure Innovation
- Ecosystem Collaboration Drives New AMBA Specification for Chiplets