Scalable UHD H.264 Encoder - Ultra-High Throughput, Full Motion Estimation engine
Industry Expert Blogs
How standard-cell based eFPGA IP can offer maximum safety, flexibility and TTM?SemiWiki - Eric EsteveOct. 23, 2017 |
Writing a white paper is never tedious, and when the product or the technology is emerging, it can become fascinating. Like for this white paper I have written for Menta “How Standard Cell Based eFPGA IP are Offering Maximum Flexibility to New System-on-Chip Generation”. eFPGA technology is not really emerging, but it’s fascinating to describe such a product: if you want to clearly explain eFPGA technology and highlight the differentiators linked with a specific approach, you must be subtle and crystal clear!
Let’s assume that you need to provide flexibility to a system. Before the emergence of eFPGA, the only way was to design a FPGA, or to add a programmable integrated circuit companion device (the FPGA) to an ASIC (the SoC). Menta has designed a family of FPGA blocks (the eFPGA) which can be integrated like any other hard IP into an ASIC. It’s important to realize that designing eFPGA IP product is not just cutting a FPGA block that you would deliver as is to an ASIC customer.
eFPGA is a new IP family that a designer will integrate into a SoC, and in this case, every IP may be unique. Menta is offering to the SoC architect the possibility to define a specific eFPGA where logic and memory size, MAC and DSP count are completely customizable, as well as the possibility to include inside this eFPGA certain customer defined blocks.