Neuromorphic Device with Low Power Consumption
By Maurizio Di Paolo Emilio, EETimes (August 1, 2022)
Compact, low–latency, and low–power computer systems are required for real–world sensory–processing applications. Hybrid memristive CMOS neuromorphic architectures, with their in–memory event–driven computing capabilities, present an appropriate hardware substrate for such tasks.
To demonstrate the full potential of such systems and drawing inspiration from the barn owl’s neuroanatomy, CEA–Leti has developed an event–driven, object–localization system that couples state–of–the–art piezoelectric, ultrasound transducer sensors with a neuromorphic computational map based on resistive random–access memory (RRAM).
CEA–Leti built and tested this object tracking system with the help of researchers from CEA–List, the University of Zurich, the University of Tours, and the University of Udine.
The researchers conducted measurements findings from a system built out of RRAM–based coincidence detectors, delay–line circuits, and a fully customized ultrasonic sensor. This experimental data has been used to calibrate the system–level models. These simulations have then been used to determine the object localization model’s angular resolution and energy efficiency. Presented in a paper published recently in Nature Communications, the research team describes the development of an auditory–processing system that increases energy efficiency by up to five orders of magnitude compared with conventional localization systems based on microcontrollers.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related News
- Tokyo Electron Device Announces New TB-OP-FCRAM Evaluation Board Released for Low Power Consumption Memory FCRAM
- MIPI RFFE (RF Front-End Control Interface) v3.0 Master and Slave Controller IP Cores for ultimate control of your RF Front-end Cellular or Base station SoC's with Low Power Consumption and Reduced Latencies
- Spectral Design & Test Inc. Announces 3rd Generation 45RFSOI Low Power SRAM Targeted at the 5G Mobile Device SoC Market
- Gowin Semiconductor Takes Leadership Position in Always-on Low Power FPGAs with GW1NZ-ZV Device Production
- Gidel Launches Lossless Compression IP that Reduces Storage Needs by Over 50%, Utilizing Only 1% of the FPGA, with Low Power Consumption
Breaking News
- Arteris Wins Two Gold and One Silver Stevie® Awards in the 2025 American Business Awards®
- Faraday Adds QuickLogic eFPGA to FlashKit‑22RRAM SoC for IoT Edge
- Xylon Introduces Xylon ISP Studio
- Crypto Quantique announces QRoot Lite - a lightweight and configurable root-of-trust IP for resource-constrained IoT devices
- BOS Semiconductors to Partner with Intel to Accelerate Automotive AI Innovation
Most Popular
- Andes Technology and Imagination Technologies Showcase Android 15 on High-Performance RISC-V Based Platform
- TSMC Unveils Next-Generation A14 Process at North America Technology Symposium
- Synopsys and TSMC Usher In Angstrom-Scale Designs with Certified EDA Flows on Advanced TSMC A16 and N2P Processes
- Certus Semiconductor Joins TSMC IP Alliance Program to Enhance Custom I/O and ESD Solutions
- M31 Collaborates with TSMC to Advance 2nm eUSB2 IP Innovation